Section 1: Measuring Motion

Preview

- Key Ideas
- <u>Bellringer</u>
- Observing Motion
- Speed and Velocity
- <u>Calculating Speed</u>
- Math Skills
- Graphing Motion

Next

Back

Preview n

Main n

Preview n

License Agreement

Next

Back

Credits

Main 1

Key Ideas

> How is a frame of reference used to describe motion?

What is the difference between speed and velocity?

What do you need to know to find the speed of an object?

> How can you study speed by using graphs?

Bellringer

Everybody knows what motion is, but how do you measure it?

- One way is to measure distance, or how far something goes during a motion.
- Another is to measure time, or how long a motion takes to occur.
- A third way is to measure speed, or how fast something is moving.

Each of the devices shown below can be used to measure some aspect of motion.

Section 1

Bellringer, continued

- 1. For each of the devices above, indicate whether it measures distance, time, or speed.
- 2. For each of the devices above, indicate which of the following units are possible for a measurement: meters (m), seconds (s), or meters per second (m/s).

© HOLT, RINEHART AND WINSTON, All Rights Reserved

Credits

Bac

Next

Preview 1

Main 1

Preview n

License Agreement

Main 1

Observing Motion

> How is a frame of reference used to describe motion?

> When an object changes position with respect to a frame of reference, the object is in motion.

- motion: an object's change in position relative to a reference point
- frame of reference: a system for specifying the precise location of objects in space and time

Credits

Visual Concept: Motion

© HOLT, RINEHART AND WINSTON, All Rights Reserved

Credits

License Agreement

Observing Motion, continued

- Distance measures the path taken.
- Displacement is the change of an object's position.
 - displacement: the change in position of an object
 - always includes direction

- In the diagram:
 - yellow line = distance
 - black arrow = displacement

Next

Credits

Preview n

License Agreement

Main 1

Preview n

License Agreement

Next

Main 1

Speed and Velocity

- What is the difference between speed and velocity?
- Speed tells us how fast an object moves, and velocity tells us both the speed and the direction that the object moves.
- **speed**: the distance traveled divided by the time interval during which the motion occurred
- velocity: the speed of an object in a particular direction

Visual Concept: Speed

Preview n

License Agreement

Next

Main 1

Speed and Velocity, continued

- Velocity is described relative to a reference point.
 - Direction is described as positive or negative along the line of motion.
 - By convention, up and right are usually positive, and left and down are negative.

• Combined velocities determine the resultant velocity.

Section 1

Visual Concept: Speed and Velocity

Section 1

Visual Concept: Velocity

© HOLT, RINEHART AND WINSTON, All Rights Reserved

Credits

License Agreement

Preview n

License Agreement

Next

Credits

Main 1

Calculating Speed

What do you need to know to find the speed of an object?

To calculate speed, you must measure two quantities: the distance traveled and the time it took to travel that distance.

Preview n

License Agreement

Main 1

Calculating Speed, continued

Average speed is calculated as distance divided by time.

speed =
$$\frac{\text{distance}}{\text{time}}$$
, or $v = \frac{d}{t}$

- SI unit for speed: meters per second (m/s)
- constant speed: equal distances in equal amounts of time

Back

Credits

Next

• instantaneous speed: the speed at a given time

Preview n

License Agreement

Next

Back

Credits

Main 1

Math Skills

Velocity

Metal stakes are sometimes placed in glaciers to help measure a glacier's movement. For several days in 1936, Alaska's Black Rapids glacier surged as swiftly as 89 meters per day down the valley. Find the glacier's velocity in m/s. Remember to include direction.

1. List the given and the unknown values. Given: time, t = 1 day distance, d = 89 m down the valley Unknown: velocity, v = ? (m/s and direction)

© HOLT, RINEHART AND WINSTON, All Rights Reserved

Credits

License Agreement

Math Skills, continued

2b. Write the equation for speed.

speed =
$$\frac{\text{distance}}{\text{time}}$$
, or $v = \frac{d}{t}$

3. Insert the known values into the equation, and solve.

 $v = \frac{d}{t} = \frac{89 \text{ m}}{8.64 \times 10^4 \text{ s}}$ (For velocity, include direction.)

$$v = 1.0 \times 10^{-3}$$
 m/s down the valley

Back

Next

Preview n

Graphing Motion

> How can you study speed by using graphs?

You can plot a graph showing distance on the vertical axis and time on the horizontal axis.

Graphing Motion, continued

- Motion can be studied using a distance vs. time graph.
 - time (x-axis) = independent variable
 - distance (y-axis) = dependent variable
- The slope of a distance vs. time graph equals speed.

Graphing Skills

Calculating Slope

The slope of a straight line equals the vertical change divided by the horizontal change. Determine the slope of the blue line shown in the distance vs. time graph.

Back

Credits

Next

Preview n

License Agreement

Main n

Graphing Skills, continued

Choose two points that you will use to calculate the slope.
 Point 1: t = 1 s and d = 6 m

Point 2: t = 4 s and d = 12 m

- 2. Calculate the vertical change and the horizontal change. vertical change = 12 m - 6 m = 6 m horizontal change = 4 s - 1 s = 3 s
- 3. Divide the vertical change by the horizontal change.
 slope = 6 m /3 s = 2 m/s

Next

Back

Credits

Preview n

Main 1