Work and Energy

Section 1: Work, Power, and Machines

Preview

- Key Ideas
- Bellringer
- What Is Work?
- Math Skills
- Power
- Machines and Mechanical Advantage

Work and Energy

Section 1

Key Ideas

>How is work calculated?
>What is the relationship between work and power?

〉How do machines make work easier?

Work and Energy

Section 1

Bellringer

1. Which of the following is an example of work: bowling or reading?
2. a. A man pushes against a brick wall, which doesn't move. Is this an example of work?
b. A student carries her books to class. Is this an example of work?
c. A woman raises and lowers dumbbells at the gym. Is this an example of work?
d. A book falls off a table and lands on the floor. Is this an example of work?

Work and Energy

Section 1

What Is Work?

>How is work calculated?

〉Work is calculated by multiplying the force by the distance over which the force is applied.

- work = force \times distance, or $\mathrm{W}=\mathrm{Fd}$
- The force must be applied in the direction of the object's motion.

Work and Energy

Section 1

What Is Work?, continued

- work: the transfer of energy to an object by the application of a force that causes the object to move in the direction of the force
- Work is zero when an object is not moving.
- Work is measured in joules (J) :

$$
1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

Work and Energy

Section 1

Visual Concept: Work

© HOLT, RINEHART AND WINSTON, All Rights Reserved

- License Agreement

Work and Energy

Section 1

Math Skills

Work

Imagine a father playing with his daughter by lifting her repeatedly in the air. How much work does he do with each lift if he lifts her 2.0 m and exerts an average force of 190 N?

1. List the given and unknown values.

Given: force, $F=190 \mathrm{~N}$ distance, $d=2.0 \mathrm{~m}$
Unknown: work, W=? J

Work and Energy

Section 1

Math Skills, continued

2. Write the equation for work.

$$
\begin{aligned}
& \text { work }=\text { force } \times \text { distance } \\
& W=f \times d
\end{aligned}
$$

3. Insert the known values into the equation, and solve.

$$
\begin{aligned}
& W=190 \mathrm{~N} \times 2.0 \mathrm{~m}=380 \mathrm{~N} \cdot \mathrm{~m} \\
& W=380 \mathrm{~J}
\end{aligned}
$$

Work and Energy

Section 1

Power

>What is the relationship between work and power?
>Power is the rate at which work is done, or how much work is done in a given amount of time.

$$
\text { power }=\frac{\text { work }}{\text { time }} \text {, or } P=\frac{W}{t}
$$

Work and Energy

Section 1

Power, continued

- power: a quantity that measures the rate at which work is done or energy is transformed
- Power is measured in watts (W): $1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$

Work and Energy

Section 1

Visual Concept: Power

Power:The Rate at Which Work is Done

Play (1)

Work and Energy

Section 1

Math Skills

Power

Lifting an elevator 18 m takes 100 kJ . If doing so takes 20 s , what is the average power of the elevator during the process?

1. List the given and unknown values.

Given:
work, $W=100 \mathrm{~kJ}=1 \times 10^{5} \mathrm{~J}$
time, $t=20 \mathrm{~s}$
Distance is not needed.
Unknown: power, P = ? W

Work and Energy

Section 1

Math Skills, continued

2. Write the equation for power.

$$
\begin{aligned}
& \text { power }=\frac{\text { work }}{\text { time }} \\
& P=\frac{W}{t}
\end{aligned}
$$

3. Insert the known values into the equation, and solve.

$$
\begin{aligned}
& P=\frac{1 \times 10^{5} \mathrm{~J}}{20 \mathrm{~s}}=5 \times 10^{3} \mathrm{~J} / \mathrm{s} \\
& P=5 \times 10^{3} \mathrm{~W}=5 \mathrm{~kW}
\end{aligned}
$$

Work and Energy

Machines and Mechanical Advantage

〉How do machines make work easier?
> Machines help do work by changing the size of an input force, the direction of the force, or both.

Work and Energy

Section 1

Machines and Mechanical Advantage, continued

- Mechanical advantage is an important ratio.
- mechanical advantage: a quantity that expresses how much a machine multiplies force or distance
mechanical advantage $=\frac{\text { output force }}{\text { input force }}=\frac{\text { input distance }}{\text { output distance }}$

Work and Energy

Section 1

Math Skills

Mechanical Advantage
Calculate the mechanical advantage of a ramp that is 5.0 m long and 1.5 m high.

1. List the given and unknown values.

Given: input distance $=5.0 \mathrm{~m}$ output distance $=1.5 \mathrm{~m}$
Unknown: mechanical advantage = ?

Work and Energy

Section 1

Math Skills, continued

2. Write the equation for mechanical advantage.

We need only the distance part of the full equation:
mechanical advantage $=\frac{\text { input distance }}{\text { output distance }}$
3. Insert the known values into the equation, and solve.

$$
\text { mechanical advantage }=\frac{5.0 \mathrm{~m}}{1.5 \mathrm{~m}}=3.3
$$

