

CHS Physical Science EOCT Review

Presented

By

Mrs. Wiggins, Mr. Weddle, & Mrs. Hardenstein

Unit 1: Science Skills and Properties of Matter

Density D=m/v

5.0g object, dimensions are:

Length = 2 cm

Width = 1 cm

Height = 5 cm

 $L \times W \times H = ?$

What is the density of the object?

Unit 2: States of Matter

Comprehending the relationship between molecular motion and phases of matter:

- Characteristics of matter related to its state
- Interpreting Properties of matter at the atomic level
- Determining the relationship between the temperature, volume, and pressure of a gas
- Using a phase diagram to clarify the transfer of energy

Phases of Matter

STATE OF MATTER	SHAPE	VOLUME	PARTICLE DESCRIPTION
SOLID	has definite shape	has definite volume	particles move slowly and cannot be compressed
LIQUID	has no definite shape (takes the shape of container)	has definite volume	particles move faster but cannot be compressed
GAS	has no definite shape	has no definite volume (fills volume of container)	particles move the fastest and can be compressed

Phase Changes of Water

Phase Change Diagram of Water

Sample Question

As a gas is heated,

- a. Particles making up the gas move slower.
- b. Particles making up the gas grow larger.
- c. Particles making up the gas move further apart.
- d. The volume of the gas usually decreases.

P = pressure

T = temperature

n = # of particles

Unit 3: Atomic Structure

Understanding the relative size, location, and charge of protons, neutrons, and

electrons in an atom.

Periodic Table block

*Locating information in the periodic table to predict the structure of an atom/ *Finding the symbol, atomic number, or atomic mass given the name of an element

 How many of each does a Copper 64 atom have?

a) Protons 29

b) Electrons 29

c) Neutrons 36

Recognizing isotopes of the same atom

Same # of protons

· Different # of neutrons

Element	Atomic Mass	Protons	Electrons	Neutrons	
Carbon-12	12.01	6	6	6	
Carbon-14	14.00	6	6	8	
Sodium-22	22.00	11	11	11	
Sodium-25	25.00	11	11	14	

Distinguishing between atoms, molecules, and ions

- Atoms made up of protons, neutrons, and electrons
- Molecules made up of atoms covalently bonded
- · Ions charged atoms #p ##e

Calculating the charge on an atom or ion based on number of protons and electrons in an atom

How are ions and atoms of the same element different?

- a) ions typically have more neutrons than atoms.
- b) Ions are always larger than atoms.
- c) Ions always either have more _____
 or less _____ than atoms.
- d) Ions have a different number of protons than the atom

Unit 4: Periodic Chart

- Outer shell electrons
- Valence state(s)
- · Outer shell electrons v.s. reactivity
- Neutral atom v.s. ion
- Metal/metalloid/nonmetal
- Reactivity relative to vertical location in a family

Sample Questions

 Almost all of the mass of an atom is located in its

- How many electrons will be find in an atom of selenium?
- How many neutrons will we find in an atom of Zr?

Iodine-127 has 53
protons and 74 neutrons.
Iodine-131 has 53
Protons and 78 neutrons.
We would consider
Iodine 127 and

- a) Ions
- b) Isotopes
- c) Different elements
- d) Exactly the same

Iodine 131 as being

Unit 5: Chemical Bonds

- Formula and name for compounds formed when two elements react
- Formula for ionic binary compounds and diatomic molecules
- Ionic v.s covalent bonds
- Formulas

 A combination of a metal and a nonmetal

NaCl

LiF

CaO

KI

Covalent

Two <u>nonmetals</u>
 combined together

NO₂

 CO_2

BCL₃

O₂

Rules for naming and writing the formula

- 1. Metal name comes first
- Change the ending of the second element to "ide"
- · If you have two nonmetals, use the prefixes:

Mono - 1 Penta - 5

Di - 2 Hexa - 6

Tri - 3 Tetra - 4 Hepta - 7

Octa - 8

 Which of the following is the correct name for the compound formed when sodium reacts with iodine?

- a) Sodium chloride
- b) Sodium iodide
- c) Sodium iodine
- d) Iodine soda

Chemical Reactions

$$H_2 + O_2 \implies H_2O$$

$$2H_2 + O_2 \implies 2H_2O$$

• Decomposition $H_2O \Rightarrow H_2 + O_2$

$$2H_2O \Rightarrow 2H_2 + O_2$$

Chemical Reactions

· Single Displacement

$$ZN + CuSO_4 \rightarrow Cu + ZnSO_4$$
 (balanced)

· Double Displacement

$$Pb(NO_3)_2 + KI \rightarrow PbI_2 + KNO_3$$

 $Pb(NO_3)_2 + 2KI \rightarrow PbI_2 + 2KNO_3$

Solute vs. Solvent in Solutions

- Sol<u>U</u>te -part that gets dissolved
- Solv<u>EN</u>t-does the dissolving
- Ex. Salt water or sodium chloride dissolved in water

Ex. salt
solute

H2O is the universal solvent

Quick Reminder

"U" put the Solute into the Solvent!

Like dissolves like Polar molecules dissolve polar molecules Non-polar molecules dissolve non-polar molecules

Factors that control solution rates

- · Collisions
- Temperature
- Mixing
- · Similarity of the solvent and solute
- Catalyst/emusifiers (ex. Eggs in cakes)
- Inhibitors
- Surface area
- Concentration *
 saturated/supersaturated/unsaturated

Supersaturated

More than what the solutions can hold. (Crystals form)
Above the line

Saturated

No more solute can dissolve.

(on the line)

Unsaturated

More solute can dissolve.

70 80 90 100 (below the line)

Sample Question

Which of the following is not characteristic of an acid?

- · A. Tastes sour
- · B. Reacts with metals
- · C. Turns litmus paper red
- D. Slippery to the touch

Sample Question

Why does oil not dissolve in water?

- · A. Water is polar and oil is nonpolar
- · B. Water and oil are both polar
- C. Water acts like an emulsifier when it is around oil
- · D. Water is less dense than oil

Acids V.S. Bases

Unit 8: Nuclear Chemistry

- · Alpha, beta, and gamma decay
- · Fission and fusion
- · Half life
- Nuclear energy

Forms an atom with two fewer protons and two fewer neutrons

Causes a neutron to change to a proton and an electron

Only releases energy

Relative Penetrating Power

Sample Question

- 3 Which type of radiation, from an external source, will penetrate deepest into the human body?
 - A alpha
 - B gamma
 - C ultraviolet
 - D x-ray

Because gamma radiation Is the most energetic radiation So it penetrates deepest into body tissue

Fission Breaking apart

Fusion Joining together

The Meaning of Half Life

- Half Life is the time required for half of the atoms to decay.
- ◆ It is not the time for all of the atoms to decay.

Half-Life

Every radioactive element has a distinctive rate of decay.

The formula : $t_{1/2}$

That is half the time it takes half of the atoms to undergo decay

Sample problem:

How much of a 100.0g sample of ¹⁹⁸ Au is left after 8.10 days if it's half-life is 2.70 days?

Answer: 12.5 g

Strategy: Make a chart

Strategy, make a chart	
Time(hr)	Amount ¹⁹⁸ Au
	remaining (g)
0	100.0 g
2.7	50.0 g
5.4	25.0 g
8.1	12.5 g

Types of Energy

- potential energy = stored energy due to position or chemical composition
- · kinetic energy = energy due to motion

Types of Energy

Mechanical

Heat

Nuclear

Electrical

Light

Sound

Chemical

Electromagnetic

Energy Transformations

Heat Energy

- Heat can be transferred through:
 - Conduction = when objects have Direct Touch
 - Convection = when matter moves (like in an OVEN)
 - Radiation = in the form of waves (does not require matter) like RAYS of the sun\
- Conductors = easily transmit energy
 - Example: metals
- Insulators = do not easily transmit energy
 - Example: gases such as air

Forces, Waves and Electricity 16%

Speed and Velocity

Speed = distance divided by time

$$s = d/t$$

- Units of speed = m/s
- · Velocity = speed in a given direction
- Example:
 - -55 mph = speed
 - 55 mph north = velocity

Acceleration

- <u>Acceleration</u> = rate at which velocity changes
- Involves a change in speed OR direction

$$a = (v_f - v_i)/t$$

- Units of acceleration = m/s^2
- Example: 0 to 60 mph in 5 seconds
- For acceleration to occur a net funbalanced) force must be applied

Sample Question #1

- Use the equations for velocity and acceleration to solve the following examples:
 - A ball rolls in a straight line very slowly across the floor traveling 1.0 meter in 2.0 seconds.
 Calculate the velocity of the ball.
 - Answer: v = 0.50 m/s
 - If the ball from the above question rolls to a stop in 2.0 seconds, calculate the acceleration (deseleration) of the ball.
 - Answer: $a = -0.25 \text{ m/s}^2$

Newton's 1st Law of Motion

- An object at rest will remain at rest and an object in constant motion wi remain in constant motion unless acted on by an unbalance force.
- Reason for seatbelts

Newton's 2nd Law of Motion

• Force = mass x acceleration

F = ma

Forces are Unbalanced

There is an acceleration

The acceleration depends directly upon the "net force"

The acceleration depends inversely upon the object's mass.

Newton's 3rd Law of Motion

 For every action, there is an equal but opposite reaction

· Examples:

- Punch a wall, it punches back
- Rocket propulsion

Gravity

- Gravity = attractive force between two objects that have mass
- Makes falling objects accelerate ($g = 9.8 \text{ m/s}^2$)
- Depends on mass and distance
- MASS Doesn't change on different planets

Mass versus Weight WEIGHT

- measure of the amount of matter in an object
- measured in kilograms.
- does not depend on location
 - an object's mass on
 Earth is the same as its
 mass on the Moon

measure of the force of gravity on an object

measured in Newtons

- does depend on location
 - an object's weight on Earth is more than its weight on the Moon

Energy and Work

- Energy = The ability to do work
- Work = transfer of energy by applying a force to move an object

W = Fd

where force and distance are in same direction

· Both work and energy are measured

Examples of Work and No Work

- Hammer applies
 a force to move
 the nail in the
 same direction
 = WORK
- Waiter applies
 a force upward
 while the tray
 moves forward
 = NO WORK

Types of Mechanical Energy

 Kinetic = energy of motion

Potential = stored
 energy due to
 positi

Light

- Light is a form of electromagnetic radiation (EM)
- EM spectrum shows the forms of radiation in order of increasing frequency (and

Long λ Low f Short \(\lambda\)
High f

Electromagnetic Wave (EM) versus Mechanical Wave

EM WAVE

- does not require matter to transfer energy
- CAN travel through a vacuum
- example: light

MECHANICAL WAVE

- does require matter to transfer energy
- CANNOT travel through a vacuum
- example: sound

Reflection of Light

Light waves follow the law of wave reflection.

When light strikes a boundary, it reflects.

The angle at which the wave approaches a flat reflecting surface is equal to the angle at which the wave leaves the surface (like a bounce pass of a basketball).

 Reflection results in image formation.

Refraction of Light

 Light waves travel faster in air than in water and slower in glass than water.

More dense = slower light

 When light enters a different medium, speed changes and it bends.

 Bending of light due to change in speed = REFRACTION

Wave Interference

- the phenomenon which occurs when two waves meet while traveling along the same medium
- constructive = waves add to produce a larger wave
- · destructive = waxes cancel to broduce a smaller wave

The Doppler Effect

Low Frequency

Small Wavelength
High Frequency

observed whenever

he source of waves is noving with respect to an observer napparent change in requency occurs oward = higher requency

The Doppler Effect for a moving sound source way = |ower frequency

- Electricity
 Electrons carry a negative charge.
- Lost electrons = positive charge
- Gained electrons = negative charge
- · REMEMBER:
 - Like charges repel
 - Opposites attract

Electrical Circuits

- · Current flows in a closed circuit
- · Ohm's Law
 - -V=IR
- Two types of circuits:
 - Series (single path)
 - Parallel (poly paths)

PARALLEI

Electromagnet

- One can make an electromagnet with a nail, battery, and wire
- When current flows through the coiled wire, the nail becomes magnetized.

Electromagnet (wire coil wrapped around steel bar)

- Waves -
 - Hertz frequency
- · Electricity
 - Coulomb-charge C
 - Volts- Potential Difference Voltage V
 - Amps- Current A
 - Ohms-Resistance Ω

 What is the mechanical advantage of this simple machine?

- · A. 0
- B. 1
- · C. 2
- D. 3

34. The mechanical advantage of a simple machine is 4. If the output distance is 3m, What must be the input distance?

- B. 1 m
- · C. 7 m
- · D. 12 m

Success takes place when preparation meets opportunity.

